вівторок, 26 лютого 2013 р.

Основи дії реактивних двигунів

          План:

1. Вступ.
2. Принцип дії, пристрій і класифікація.
    2.1 Повітряно-реактивний двигун.
    2.2 Ракетний двигун.
3. Схема реактивного авіадвигуна.
4. Термодинамічні властивості .
5. Ефективність.
6. Література.
 1. Вступ.

Реактивний двигун - це двигун-рушій, що створює реактивну тягу внаслідок швидкого витікання робочого тіла із сопла, найчастіше робочим тілом є гарячі гази, що утворюються внаслідок спалювання палива у камерах згоряння. Бувають турбореактивні, пульсуючі (безкомпресорні), прямоточні(ефективно працюють тільки при надзвукових швидкостях) та ракетні двигуни.
2. Принцип дії, пристрій і класифікація.
Реактивні двигуни є основним видом силових установок авіаційних, ракетних і космічних літальних апаратів, що створюють прикладену до них реактивну тягу.
Реактивна тяга створюється двигуном, що викидає в навколишнє середовище визначену масу речовини (робочого тіла).
У залежності від способу одержання сили тяги всі реактивні двигуни поділяються на дві основні групи повітряно-реактивні і ракетні.
2.1 Повітряно-реактивний двигун — тепловий реактивний двигун, у якому як робоче тіло використовується атмосферне повітря, що нагрівається за рахунок хімічної реакції окислення   пального атмосферним киснем.
У повітряно-реактивних двигунах основним компонентом робочого тіла, що здійснює термодинамічний цикл, є атмосферне повітря, кисень якого використовується як окислювач для перетворення хімічної енергії палива в теплову.
Повітряно-реактивні двигуни поділяються на двигуни прямої і непрямої реакції. У перших вся корисна робота затрачається тільки на прискорення повітря. В інших велику частину корисної роботи (чи вся) передається рушію (наприклад, гвинту), за допомогою якого створюється тяга.
Газотурбінні двигуни (ГТД) знаходять найбільше застосування. Основні процеси в них аналогічні тим, що протікають у будь-яких газотурбінних двигунах. ГТД використовуються в основному при помірних швидкостях польоту.
Турбореактивний двигун установлюють на літаках з швидкостями близькими до швидкості звуку, польоту. Параметри робочого тіла (повітря і продуктів згоряння палива в повітрі) - тиск P, температура Т і швидкість W уздовж газоповітряного тракту ТРД змінюються так, як показаний у нижній частині. На зльоті повітря з зовнішнього середовища засмоктується через повітрозабірник. Унаслідок втрат у ньому тиск перед компресором стає трохи нижче тиску зовнішнього середовища. У польоті з великими швидкостями повітря піддається динамічному стиску у вільному струмені і надзвуковому дифузорі, потім стискується в компресорі, швидкість його трохи зменшується, а температура зростає. За камерою згоряння при визначеному коефіцієнті надлишку повітря температура Т продуктів згoрання менше температури полум'я (Тпл) і має значення, при якому забезпечується надійна робота турбіни ГТД. Тиск P продуктів згоряння в камері трохи падає, швидкість зростає.
У двоконтурному турбореактивному двигуні, вхідне у нього повітря, поділяється на два потоки. Перший контур двигуна є звичайним турбогвинтовим двигуном, однак у ньому частина потужності турбіни передається, не зростає. Отримані продукти згоряння розширюються в турбіні (перша ступінь розширення) і в реактивному соплі (друга ступінь розширення). При цьому їхня швидкість постійно зростає, температура і тиск у турбіні знижуються, а в соплі залишаються майже постійними. Турбореактивний двигун з форсажною камерою відрізняється від ТРД наявністю форсажної камери, у якій відбувається додаткове спалювання палива за турбіною.
2.2 Ракетний двигун - двигун, що використовує для роботи тільки речовини і джерела енергії, що маються в запасі на апараті.
Ракетні двигуни працюють на паливі й окислювачі, що транспортуються разом із двигуном, тому його робота не залежить від зовнішнього середовища. Рідинні ракетні двигуни працюють на хімічному рідкому паливі, що складається з палива й окислювача. Рідкі компоненти палива безупинно подаються під тиском з баків у камеру згоряння насосами (при турбонасосній подачі) чи тиском стиснутого газу (при витискній чи балонній подачі). У камері згоряння в результаті хімічної взаємодії палива й окислювача утворяться продукти згоряння з високими параметрами, при витіканні яких через сопло утвориться кінетична енергія середовища, що минає, у результаті чого створюється реактивна тяга. Таким чином хімічне паливо буде служити джерелом енергії, так і робочим тілом.
Аналогічно працюють ракетні двигуни вихідного робочого тіла, що використовують у якості твердого палива, що містить як паливо, так і компоненти, що окисляють - ракетні двигуни твердого палива (РДТТ). Якщо як паливо застосовувати тверде паливо, а як окислювач- рідку речовина, то такий двигун називається гібридним ракетним двигуном (ГРД).
До нехімічних ракетних двигунів відносяться ядерні (ЯРД) і електричні (ЕРД). Енергія ЯРД використовується для газифікації і нагрівання робочого тіла, що не змінює свого складу, минає реактивне сопло і створює тягу. Робочі тіла в ЯРД складаються із заряджених часток, що розганяються за допомогою електростатичних чи електромагнітних полів.
3.Схема реактивного авіадвигуна.